545 research outputs found

    Augmented-reality template guided transorbital approach for intradural tumors.

    Get PDF
    For minimally invasive approaches to a deep-lying skull base lesion, the bone opening must be precisely placed and adequately wide to accomplish the surgical goal. Surgical rehearsal in virtual reality (VR) can generate navigation-integrated augmented reality (AR) templates to ensure precise surgical openings. In this video, the authors used AR templates for the transpalpebral, transorbital approach for intradural tumors. VR renderings of patient-specific anatomy were used in surgical rehearsal. The optimal openings were saved and, at surgery, projected into the eyepiece of the navigation-tracked microscope. The template enhanced the planning of the incision and soft-tissue exposure and guided the drill toward the target. The video can be found here: https://stream.cadmore.media/r10.3171/2021.10.FOCVID21172

    Inactivation of viruses by coherent excitations with a low power visible femtosecond laser

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resonant microwave absorption has been proposed in the literature to excite the vibrational states of microorganisms in an attempt to destroy them. But it is extremely difficult to transfer microwave excitation energy to the vibrational energy of microorganisms due to severe absorption of water in this spectral range. We demonstrate for the first time that, by using a visible femtosecond laser, it is effective to inactivate viruses such as bacteriophage M13 through impulsive stimulated Raman scattering.</p> <p>Results and discussion</p> <p>By using a very low power (as low as 0.5 nj/pulse) visible femtosecond laser having a wavelength of 425 <it>nm </it>and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power density was greater than or equal to 50 <it>MW/cm</it><sup>2</sup>. The inactivation of M13 phages was determined by plaque counts and had been found to depend on the pulse width as well as power density of the excitation laser.</p> <p>Conclusion</p> <p>Our experimental findings lay down the foundation for an innovative new strategy of using a very low power visible femtosecond laser to selectively inactivate viruses and other microorganisms while leaving sensitive materials unharmed by manipulating and controlling with the femtosecond laser system.</p

    Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser

    Get PDF
    BACKGROUND: Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses – non-enveloped, icosahedral viruses remains unknown. RESULTS AND DISCUSSIONS: We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation. CONCLUSION: We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission electron microscope (TEM) images of viral particles before and after USP laser irradiation, the locations of weak structural links on the capsid of MNV-1 were revealed. This important information will greatly aid our understanding of the structure of non-enveloped, icosahedral viruses. We envision that this non-invasive, efficient viral eradication method will find applications in the disinfection of pharmaceuticals, biologicals and blood products in the near future

    Observation of electronic Raman scattering from Mg-doped wurtzite GaN

    Get PDF
    Electronic Raman scattering experiments have been carried out on both molecular beam epitaxy and metal-organic chemical vapor deposition-grown Mg-doped wurtzite GaN samples. Aside from the expected Raman lines, a broad structure (full width at half maximum≅15 cm−1)observed at around 841 cm−1 is attributed to the electronic Raman scattering from neutral Mg impurities in Mg-doped GaN. Our experimental results demonstrate that the energy between the ground and first excited states of Mg impurities in wurtzite GaN is about one-half of its binding energy

    Femtosecond laser treatment enhances DNA transfection efficiency in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene therapy with plasmid DNA is emerging as a promising strategy for the treatment of many diseases. One of the major obstacles to such therapy is the poor transfection efficiency of DNA <it>in vivo</it>.</p> <p>Methods</p> <p>In this report, we employed a very low power, near-infrared femtosecond laser technique to enhance the transfection efficiency of intradermally and intratumorally administered DNA plasmid.</p> <p>Results</p> <p>We found that femtosecond laser treatment can significantly enhance the delivery of DNA into the skin and into established tumors in mice. In addition, we found that both laser power density as well as duration of laser treatment are critical parameters for augmenting DNA transfection efficiency. The femtosecond laser technique employs a relatively unfocused laser beam that maximizes the transfected area, minimizes damage to tissue and simplifies its implementation.</p> <p>Conclusion</p> <p>This femtosecond new laser technology represents a safe and innovative technology for enhancing DNA gene transfer in vivo.</p

    Using music and motion analysis to construct 3D animations and visualisations

    Get PDF
    This paper presents a study into music analysis, motion analysis and the integration of music and motion to form creative natural human motion in a virtual environment. Motion capture data is extracted to generate a motion library, this places the digital motion model at a fixed posture. The first step in this process is to configure the motion path curve for the database and calculate the possibility that two motions were sequential through the use of a computational algorithm. Every motion is then analysed for the next possible smooth movement to connect to, and at the same time, an interpolation method is used to create the transitions between motions to enable the digital motion models to move fluently. Lastly, a searching algorithm sifts for possible successive motions from the motion path curve according to the music tempo. It was concluded that the higher ratio of rescaling a transition, the lower the degree of natural motio

    Is Combined Spinal-Epidural Analgesia Associated with More Rapid Cervical Dilation in Nulliparous Patients When Compared with Conventional Epidural Analgesia?

    Get PDF
    Background: The combined spinal-epidural technique provides rapid onset of labor analgesia and, anecdotally, is associated with labors of shorter duration. Epidural analgesia, by contrast, has been suggested to prolong labor modestly. It is unclear, however, whether more rapid cervical dilation in patients who receive combined spinal-epidural analgesia is a physiologic effect of the technique or an artifact of patient selection. The authors hypothesized that anesthetic technique may influence the rate of cervical dilation, and we compared the effects of combined spinal-epidural with those of epidural analgesia on the rate of cervical dilation. Methods: One hundred healthy nulliparous parturients in spontaneous labor with singleton, vertex, full-term fetuses were enrolled in a double-blinded manner when their cervical dilation was less than 5 cm. The patients were randomly assigned to receive analgesia via a standardized combined spinal-epidural (n ‫؍‬ 50) or epidural (n ‫؍‬ 50) technique. Data were collected on cervical dilation, pain, sensory level, and motor blockade. Results: When regional analgesia was induced in comparabl
    corecore